Charmonium(-like) and Bottomonium(-like) States Results from Belle and BaBar

Mostly X(3872).

Jens Sören Lange Justus-Liebig-Universität Gießen

MENU10 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon 05/31-06/04, 2010 College of William and Mary Williamsburg, Virginia

Charmonium Excited States $n \le 3, L \le 4$

Barnes, Godfrey, Swanson, Phys. Rev. D72(2005)054026

Outline

- Width of η_c
- X(3872) Radiative Decays
- X(3872) and Y(3940) into J/ ψ 3π
- Y(1S) Radiative Decays to X(3872)
- Y(1D)

B Factories

~952 /fb

On-resonance samples: Y(4S): 711 /fb Y(5S): 121 /fb Y(3S): 3.0 /fb Y(2S): 24 /fb Y(1S): 5.7 /fb Off-resonance: 87 /fb

~553 /fb On-resonance samples: Y(4S): 433 /fb Y(3S): 30 /fb Y(2S): 14 /fb Off-resonance: 54 /fb

Production of Charmonium

Decays of Charmonium States

η_{c}

• Ground state of Charmonium $J^{PC}=0^{-+}$, ${}^{1}S_{0}$

- Observed e.g. in J/ψ and ψ' radiative decays, but cross section varies according to E^a_γ, a=3...7
 - \rightarrow modifies lineshape
 - → width determination non-trivial
- $\gamma \gamma \rightarrow \eta_c$ Breit-Wigner line shape is appropriate approximation
- new high statistics measurement BaBar, 469/fb
 Phys. Rev. D81(2010)052010 14090 η_c events

Precise Measurement of \eta_c Mass and Width

BaBar Phys. Rev. D81(2010)052010 arXiv: 1002.3000 [hep-ex]

$$m_{\eta_c} = 2982.2 \pm 0.4 \pm 1.6 \text{ MeV}/c^2$$

 $\Gamma = 31.7 \pm 1.2 \pm 0.8 \text{ MeV}$

 $\eta_{c}(1S)$ WIDTH

Improvement by factor ~3 in stat. and syst. error compared to BaBar'08 (B meson decays) and Belle'08 (γγ)

X(3872)

A molecular state?

X(3872)

 observed in more than one decay channel

X(3872)	\rightarrow	$J/\psi \pi^+\pi^-$
X(3872)	\rightarrow	$J/\psi\gamma$
X(3872)	\rightarrow	$J/\psi \pi^+\pi^-\pi^0$
X(3872)	\rightarrow	$D^0 \overline{D}^0 \pi^0$
X(3872)	\rightarrow	$D^0 \overline{D}^0 \gamma$
X(3872)	\rightarrow	$\psi^{\prime}\gamma$

- narrow width Γ<2.3 MeV although <u>above</u> DD^(*) threshold
- Mass 3872.3±0.8 MeV (PDG2008) very close to threshold

$$M_X - (m_{D^*} + m_{\bar{D}^0}) = -0.6 \pm 0.6 \text{ MeV}$$

S-wave molecular state?

Belle, Phys. Rev. Lett.91(2003)262001CDF-II, Phys. Rev. Lett.93(2004)072001D0, Phys. Rev. Lett.93(2004)162002BaBar, Phys. Rev. D71(2005)071103

Sören Lange | X(3872) from Belle and BaBar MENU10 | June 1, 2010

Strong Decay X(3872) $\rightarrow \overline{D}D^*$

- Decay into $\overline{D}D^*$ is dominant BR is factor 9.4^{+3.6}-4.3 higher than for J/ $\psi \pi^+ \pi^-$
- BaBar, Phys. Rev. D77(2008)011102(R) m=3875.1^{+0.7}_{-0.5} ±0.5 MeV
 - binned maximum likelihood fit
 - 1-dim fit, M(D*D)
 - signal pdf from MC
 - exponential function background
- Belle, Phys. Rev. D81(2010)031103 m=3872.9^{+0.6 +0.4}-0.5 MeV
 - <u>un</u>binned maximum likelihood fit
 - 2-dim fit
 - beam constraint mass Gaussian signal Argus function for background
 - M(D*D) Breit-Wigner signal square root for background

Radiative Decay X(3872) \rightarrow J/ $\psi \gamma$, $\psi' \gamma$

- Rare Decay BR is factor ~6 smaller than BR($X \rightarrow J/\psi \pi^+ \pi^-$) Combined branching fraction BR(B decay) × BR(X decay) $\simeq 10^{-6}$
- Evidence for X(3872) \rightarrow J/ $\psi \gamma$ by Belle 256/fb 13.6±4.4 events arXiv:hep-ex/0505037
- Confirmed by BaBar 424/fb 23.0±6.4 events Phys. Rev. D 74(2006)071101
- Proof for positive C parity
- BaBar found evidence for X(3872)→ψ'γ 424/fb 25.4±7.4 events Phys. Rev. Lett. 102(2009)132001

$$\frac{\mathcal{B}(X(3872) \to \psi' \gamma)}{\mathcal{B}(X(3872) \to J/\psi \gamma)} = 3.4 \pm 1.4 \qquad \text{(large)}$$

Radiative Decay X(3872) \rightarrow J/ $\psi \gamma$, $\psi' \gamma$

- X(3872) $\rightarrow J/\psi \gamma$, E_{γ}=775 MeV VMD contributes (ρ , ω)
- X(3872) $\rightarrow \psi' \gamma$, E_{γ} =186 MeV can only proceed through light quark annihilation \rightarrow expected small
 - \rightarrow BaBar measurement surprising
- New measurement by Belle Preliminary, QWG10, 711/fb

Swanson, Phys. Rept. 429(2006)243

New Measurement of X(3872) Radiative Decays X(3872) \rightarrow J/ $\psi \gamma$ and X(3872) $\rightarrow \psi' \gamma$

Sören Lange | X(3872) from Belle and BaBar MENU10 | June 1, 2010

New Measurement of X(3872) Radiative Decays X(3872) \rightarrow J/ $\psi\gamma$

- Signal PDF
 1 double Gaussian
- (Flat) background by 1st order Chebyshev polynomial
- 1-dim unbinned fit to mass(J/ψγ)
- X(3872) mass is <u>fixed</u>
- Signal is clearly (re-)established
- $B^+ \rightarrow K^+ X(3872)$ $30.0^{+8.2}_{-7.4} \text{ events } (4.9\sigma)$ $B^0 \rightarrow K^0 X(3872)$ $5.7^{+3.5}_{-2.8} (2.4\sigma)$

Belle, Preliminary, QWG '10, 711/fb

New Measurement of X(3872) Radiative Decays X(3872) $\rightarrow \psi \gamma$

 ψ 'K and ψ 'K* background is different for II and J/ $\psi \pi \pi$ \rightarrow simultaneous fit required, 2^{nd} order Chebyshew polynom Combinatorial Background

 $\begin{array}{l} {\sf B}^+ \to {\sf K}^+ \; {\sf X}(3872) \\ {\sf 5.0}^{+11.9}_{-11.0} \; events \\ (0.4\sigma) \end{array}$

$$B^{0} → K^{0} X(3872)$$

1.5^{+4.8}_{-3.9}
(0.2σ)

No signal observed

No indication, that $X \rightarrow (n=2)$ charmonium is stronger than $X \rightarrow (n=1)$ charmonium

Same Analysis, but reference signal $\chi_{c1,2} \rightarrow J/\psi\gamma$

First Evidence for $B^\pm\!\!\rightarrow\chi_{c2}~K^\pm$

 $\begin{array}{l} B^+ \rightarrow K^+ \; \chi_{c2} \\ 32.8^{+10.9} _{-10.2} \; events \\ 3.6\sigma \; (stat. \; and \; syst.) \end{array}$

 $\begin{array}{l} B^0 \rightarrow K^0 \ \chi_{c2} \\ 2.8^{+4.7} _{-3.9} \ events \\ 0.7\sigma \ (stat. \ and \ syst.) \end{array}$

 $\textbf{X(3872)} \rightarrow \textbf{J/\psi} \; \textbf{3}\pi$

Search for X(3872) \rightarrow J/ $\psi \omega$

- X(3872) breaks isospin in the strong decay X(3872) $\rightarrow J/\psi\rho(\rightarrow \pi^+ \pi^-)$
- ρ/ω mixing?
 Terasaki, Prog. Theor. Phys. 122(2010)1285
- \rightarrow Investigation of X(3872) \rightarrow J/ ψ ($\rightarrow \pi^+ \pi^- \pi^0$)
- Difficulty: nearby Y(3940) also decays to same final state

```
Belle, Phys. Rev. Lett. 94(2005)182002 275 \times 10<sup>6</sup> B meson pairs mass 3943±11(stat.)±13(syst.) MeV width 87±22(stat.)±26(syst.) MeV
```

```
BaBar, Phys. Rev. Lett. 101(2008)082001
383 \times 10<sup>6</sup> B meson pairs
mass 3914.6<sup>+3.8</sup><sub>-3.4</sub> (stat.)±2.0 (syst.) MeV
width 34<sup>+12</sup><sub>-8</sub>(stat.)±5(syst.) MeV
```


Observation of X(3872) \rightarrow J/ $\psi \omega$ ($\rightarrow \pi^+ \pi^- \pi^0$)

- Belle, arXiv:hep-ex/0505037 256/fb
- in order to establish a signal in B meson decays: check M_{BC} in slices of invariant mass

$$M_{\rm bc} \equiv \sqrt{(E_{\rm beam}^{\rm cms})^2 - (p_B^{\rm cms})^2}$$

New analysis of X(3872) \rightarrow J/ $\psi \omega$ ($\rightarrow \pi^+ \pi^- \pi^0$)

 Isospin violation (additional π⁰) seems large

$$\frac{\mathcal{B}(X \to \pi^+ \pi^- \pi^0 J/\psi)}{\mathcal{B}(X \to \pi^+ \pi^- J/\psi)} = 1.0 \pm 0.4 \text{(stat)} \pm 0.3 \text{(syst)}$$

• \rightarrow BaBar re-analysis of Phys. Rev. Lett.101(2008)082001 with new ω mass cut

BaBar, QWG10 preliminary

arXiv:1005.5190, 433/fb

Belle MC efficiency corrected

BaBar, arXiv:1005.5190, 433/fb

	Belle	BaBar	BaBar
	$\mathrm{hep}\text{-}\mathrm{ex}/0505037$	Phys. Rev. Lett.101(2008)082001	QWG10
Cut on ΔE	$\pm 35 \text{ MeV}$	$\pm 20 \text{ MeV} (B^+)$	$\pm 20 \text{ MeV} (B^+)$
$=\sqrt{(E_B^{cms})^2 - (p_B^{cms})^2}$	(charged only)	$\pm 15 \text{ MeV}(B^0)$	$\pm 15 \text{ MeV} (B^0)$
Cut on $m(3\pi)$	$\geq 0.7500 \text{ GeV}$	$0.7695 \cdot 0.7965 \text{ GeV} (B^+)$	$0.7400-0.7965 \text{ GeV} (B^+)$
	(charged only)	$0.7605-0.8055 \text{ GeV} (B^0)$	$0.7400-0.8055 \text{ GeV} (B^0)$

PDG2008 $m(\omega) = 0.78265 \pm 0.00012$ MeV

Confirmation of X(3872) \rightarrow J/ $\psi \omega$

Testing the Quantum Numbers of the X(3872)

 $X(3872) \rightarrow J/\psi 2\pi$ S-wave preferred

Implication for X(3872) possible Charmonium Assignment

- Case $2\pi \rightarrow P=+$ 1++ χ_{c1} $^{3}P_{1}$ predicted mass 3953 MeV n=2supported by angular analysis CDF-II, PRL98(2007)132002 Belle, hep-ex/0505037
- Case $3\pi \rightarrow P=-2-+$

 $\eta_{c2} {}^{1}D_{2} \leq 100 \text{ MeV}$ lower than χ_{c1} predicted mass 3837 MeV n=1 (would be a L=2 meson)

Mass predictions by Barnes, Godfrey, Swanson Phys. Rev. D72(2005)054026

$J/\psi\omega$ in $\gamma\gamma$ collisions

$\gamma \gamma \rightarrow J/\psi \omega$

694/fb includes Y(3S) and Y(5S) data

- Belle, Phys. Rev. Lett. 104(2010)092001
- Final state 2 vector mesons with I=0

$\gamma\,\gamma\to J/\psi\;\omega$

- $\gamma \gamma$ collision signal region (P_T < 0.1 GeV)
- Clear enhancement seen just above J/ ψ ω threshold
- 7.7σ (stat.)
 49±14(stat.)±4(syst.) events
- M=3915±3(stat.)±2(syst.) MeV
- Γ=17±10(stat.)±3(syst.) MeV
- C=even, but J^P not yet determined (need much more statistics)
- Is this the Y(3940)? (in a 2nd production mode)

Sören Lange | X(3872) from Belle and BaBar MENU10 | June 1, 2010

Upsilon(1S) Radiative Decays

Radiative Upsilon Decays to Charmonium

- (b \overline{b}) \rightarrow (c \overline{c}) γ
- Predictions

 e.g. Gao, Zhang, Chao,
 hep-ph/0701009
- ³ S₁ is e.g. Y(1S)
- ³ P₁ may be 1++
 e.g. X(3872)
- rare events BR
 10⁻⁵ expected

Interference between QED and QCD amplitudes expected

Search for Y(1S) $\rightarrow \gamma X(3872) (\rightarrow J/\psi \pi^+ \pi^-)$

40

- Belle 5.712/fb on Y(1S) 88 million Y(1S) decays
- Selection:
 - 4 charged tracks, net charge = 0
 - PID
 - 2.5σ cut on J/ ψ mass
 - Ε_γ>3.5 GeV
 - Recoil Mass on 4 charged tracks consistent with a photon ($m_{\gamma}=0$) $-2 < M_{recoil} < 2 \text{ GeV}^2$
 - reject ISR events by |cos θ_ν*|<0.9
- Crosscheck ψ' (same final state) $\sigma(e^+e^-) \rightarrow \psi' = 20.2 \pm 1.1$ (stat.) pb
- BR(Y(1S) $\rightarrow \gamma X(3872) \times$ BR(X(3872) \rightarrow J ψ π^+ π^-) < 2.2x10^{-6} at 90% CL

10

<u>3.</u>6

3.8

4.2

 $M(\pi^{+}\pi^{-}J/\psi)$ (GeV/c²)

44

46

Upsilon(1D)

An L=2 Meson.

Eichten, Godfrey, Mahlke, Rosner, Rev. Mod. Phys. 80(2008)1161 hep-ph/0701208

2 D-wave states above threshold $\psi(3770)$ (n=1) and $\psi(4153)$ (n=2) both 1 -- \rightarrow broad > 20 MeV (exp.)

2 D-wave states below threshold \rightarrow predicted to be narrow (hadronic width <~30keV, see e.g. Kwong, Phys. Rev. D38(1988)279) possible to resolve triplet? 0--, 1--, 2--

Summary

B Factories continue to provide exciting results:

- Charmonium spectroscopy
 - in B meson decays
 - in γγ collisions
 - in Upsilon decays
- Bottomonium spectroscopy
- Many more analyses ongoing ...